
DryVR Documentation
Release 2.0

Chuchu Fan, Bolun Qi

Sep 27, 2021

Contents

1 Status 3

2 Installation 5

3 Usage 7
3.1 Run DryVR Verfication . 7
3.2 Run DryVR Control Synthesis . 7
3.3 Plotter . 7

4 DryVR’s Verification Language 9
4.1 Black-box Simulator . 9
4.2 Transition Graph . 9
4.3 Input Format . 10
4.4 Output Interpretation . 11
4.5 Advanced Tricks: Verify your own black-box system . 12

5 DryVR’s Synthesis Language 17
5.1 Input Format . 17
5.2 Output Interpretation . 18
5.3 Advanced Tricks: Making control synthesis work on your own black-box system 18

6 Examples and Performance Evaluation 21
6.1 Getting started: Simple Automatic Emergency Braking . 21
6.2 The Autonomous Vehicle Benchmark . 22
6.3 Verification Examples . 22
6.4 Verification Peformance Evaluation . 22
6.5 Synthesis Examples . 24
6.6 Synthesis Performance Evaluation . 24

7 Parameters configuration 27

8 Publications 29

9 People Involved 31

i

ii

DryVR Documentation, Release 2.0

Release 2.0

Date 01/30/2018

Latest manual url http://dryvr-02.readthedocs.io/en/latest/

DryVR is a framework for verifying cyber-physical systems. It specifically handles systems that are described by a
combination of a Black-box Simulator for trajectories and a white-box Transition Graph specifying mode switches.
The framework uses a probabilistic algorithm for learning sensitivity of the continuous trajectories from simulation
data and includes a bounded reachability analysis algorithm that uses the learned sensitivity.

Contents 1

http://dryvr-02.readthedocs.io/en/latest/

DryVR Documentation, Release 2.0

2 Contents

CHAPTER 1

Status

Jan 24.2018. DryVR 2.0 is done. Adding state dependent transition and control synthesis.

April 18.2017. The installation is tested on Ubuntu 16.04 (64 bit version).

March 23.2017. The tool is tested on Ubuntu 16.04 (64 bit version).

3

DryVR Documentation, Release 2.0

4 Chapter 1. Status

CHAPTER 2

Installation

To install the required packages, please run:

sudo ./installRequirement.sh

The current version of installation file has been tested on a clean install of Ubuntu 16.04. If you wish to install DryVR
on other versions of Linux operation system, please make sure the following packages are correctly installed.

To install packages indepently, the following will be required:

• python 2.7

• numpy

• scipy

• sympy

• matplotlib

• python igraph

• python Z3

• glpk(4.39 or ealier eversion)

• pyglpk

• python-cairo

• python tk

• gmpc

• graphviz

• pygraphviz

5

DryVR Documentation, Release 2.0

6 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Run DryVR Verfication

To run DryVR verfication, please run:

python main.py input/*/[input_file]

for example:

python main.py input/daginput/input_thermo.json

3.2 Run DryVR Control Synthesis

To run DryVR graph search algorithm, please run:

python rrt.py input/*/[input_file]

for example:

python rrt.py input/rrtinput/mazefinder.json

3.3 Plotter

After you run the our tool, a reachtube.txt file will be generated in output folder unless the model is determined unsafe
during simulation test.

To plot the reachtube, please run:

python plotter.py -x [x dimension number] -y [y dimension number list] -f [input file
→˓name] -o [output file name]

7

DryVR Documentation, Release 2.0

-x is the dimension number for x-axis, the default value will be 0, which is the dimension of time.

-y is dimension number lists indicates the dimension you want to draw for y-axis. For example -y [1,2]. The default
value will be [1].

-f is the file path for reach tube file that you want to plot, the default value will be output/reachtube.txt.

-o is output file option, the default value is plotResult.png.

To get help for plotter, please run:

python plotter.py -h

Note that the dimension 0 is local time and last dimension is global time. For example, input_AEB’s inital set is [[0.0,-
23.0,0.0,1.0,0.0,-15.0,0.0,1.0],[0.0,-22.8,0.0,1.0,0.0,-15.0,0.0,1.0]]. Therefore, it has 8 dimensions in total. You can
choose to plot dimension from 0 to 9. Where dimension 0 is the local time and dimension 9 is global time. Dimension
1~8 is corresponding to the dimension you specify in initial set.

for example:

python plotter.py -y [1,2] -f output/reachtube.txt

More plot results can be found at the Examples and Performance Evaluation page.

8 Chapter 3. Usage

CHAPTER 4

DryVR’s Verification Language

In DryVR, a hybrid system is modeled as a combination of a white-box that specifies the mode switches (Transition
Graph) and a black-box that can simulate the continuous evolution in each mode (Black-box Simulator).

4.1 Black-box Simulator

The black-box simulator for a (deterministic) takes as input a mode label, an initial state 𝑥0, and a finite sequence of
time points 𝑡1, . . . , 𝑡𝑘, and returns a sequence of states 𝑠𝑖𝑚(𝑚𝑜𝑑𝑒, 𝑥0, 𝑡1), . . . , 𝑠𝑖𝑚(𝑚𝑜𝑑𝑒, 𝑥0, 𝑡𝑘) as the simulation
trajectory of the system in the given mode starting from 𝑥0 at the time points 𝑡1, . . . , 𝑡𝑘.

DryVR uses the black-box simulator by calling the simulation function:

TC_Simulate(Modes,initialCondition,time_bound)

Given the mode name “Mode”, initial state “initialCondition” and time horizon “time_bound”, the function
TC_Simulate should return an python array of the form:

[[t_0,variable_1(t_0),variable_2(t_0),...],[t_1,variable_1(t_1),variable_2(t_1),...],.
→˓..]

We provide several example simulation functions and you have to write your own if you want to verify systems that
use other black-boxes. Once you create the TC_Simulate function and corresponding input file, you can run DryVR
to check the safety of your system. To connect DryVR with your own black-box simulator, please refer to section
Advanced Tricks: Verify your own black-box system for more details.

4.2 Transition Graph

Fig. 1: The transition of Automatic Emergency Braking (AEB) system

A transition graph is a
labeled, directed graph
as shown on the right.
The vertex labels (red

9

DryVR Documentation, Release 2.0

nodes in the graph) spec-
ify the modes of the sys-
tem, and the edge labels
specify the guard and re-
set from the predeces-
sor node to the successor
node.

The transition graph
shown on the right
defines an automatic
emergency braking
system. Car1 is driving
ahead of Car2 on a
straight lane. Initially,
both car1 and car2 are
in the constant speed
mode (Const;Const).
Within a short amount
of time ([0,0.1]s) Car1
transits into brake mode
while Car2 remains
in the cruise mode
(Brk;Const). After
[0.8,0.9]s, Car2 will
react by braking as well
so both cars are in the
brake mode (Brk;Brk).

The transition graph will
be generated automat-
ically by DryVR and
stored in the tool’s root
directory as curGraph.png

4.3 Input Format

The input for DryVR is of the form

{
"vertex":[transition graph vertex labels (modes)]
"edge":[transition graph edges, (i,j) means there is a directed edge from vertex i

→˓to vertex j]
"variables":[the name of variables in the system]
"guards":[transition graph edge labels (transition condition)]
"resets":[reset condition after transition] # This is optional if you do not want

→˓reset
"initialVertex":integer indicates the vertex to start # This is optional for DAG

→˓graph
"initialSet":[two arrays defining the lower and upper bound of each variable]
"unsafeSet":@[mode name]:[unsafe region]
"timeHorizon":[Time bound for the verification]
"directory": directory of the folder which contains the simulator for black-box

→˓system

(continues on next page)

10 Chapter 4. DryVR’s Verification Language

DryVR Documentation, Release 2.0

(continued from previous page)

"bloatingMethod": specify the bloating method, which can be either "PW" or "GLOBAL"
→˓# This is optional, if you don't have this field in input file, DryVR will use
→˓GLOBAL as default bloating method.
"kvalue": specify the k-value that used by piecewise bloating method # This field

→˓must be specified if you choose the bloatingMethod to "PW"
}

Some fields are optional in DryVR’s input langauge such as resets, initialVertex, bloatingMethod and kvalue under
some conditions. Please read the comment.

Example input for the Automatic Emergency Braking System

{
"vertex":["Const;Const","Brk;Const","Brk;Brk"],
"edge":[[0,1],[1,2]],
"variables":["car1_x","car1_y","car1_vx","car1_vy","car2_x","car2_y","car2_vx",

→˓"car2_vy"],
"guards":[
"And(t>0.0,t<=0.1)",
"And(t>0.8,t<=0.9)"

],
"initialSet":[[0.0,0.5,0.0,1.0,0.0,-17.0,0.0,1.0],[0.0,1.0,0.0,1.0,0.0,-15.0,0.0,1.

→˓0]],
"unsafeSet":"@Allmode:And(car1_y-car2_y<3, car2_y-car1_y<3)",
"timeHorizon":5.0,
"directory":"examples/cars"

}

4.4 Output Interpretation

The tool will print background information like the current mode, transition time, initial set and discrepancy function
information on the run. The final result about safe/unsafe will be printed at the bottom.

The whole verification algorithm will start from doing a few simulations to quickly find the counter-example. If the
simulations are all safe, then the main verification process will start. The number of initial simulation can be changed
by the user (See {Parameters configuration})

When the system is safe, the final result will look like

System is Safe!

If the verification result is safe, the cooresponding reachtubes are stored in “output/reachtube.txt”

When the system is unsafe from the initial simulations, the final result will look like

Current simulation is not safe. Program halt

When the system is unsafe from the verification process, the final result will look like

System is not safe in Mode [Mode name]

When the system is unknown from verification, the final result will look like

Hit refine threshold, system halt, result unknown

4.4. Output Interpretation 11

DryVR Documentation, Release 2.0

If the simulation result is not safe from the initial simulations, the unsafe simulation trajectory will be stored in
“output/Traj.txt”.

If the verfication result is not safe from the verification process, the counter example reachtube will be stored in
“output/unsafeTube.txt”.

4.5 Advanced Tricks: Verify your own black-box system

We use a very simple example of a thermostat as the starting point to show how to use DryVR to verify your own
black-box system.

The thermostat is a one-dimensional linear hybrid system with two modes “On” and “Off”. The only state variable is
the temperature 𝑥. In the “On” mode, the system dynamic is

�̇� = 0.1𝑥,

and in the “Off” mode, the system dynamic is

�̇� = −0.1𝑥,

As for DryVR, of course, all the information about dynamics is hidden. Instead, you need to provide the simulator
function TC_Simulate as discussed in Black-box Simulator.

Step 1: Create a folder in the DryVR root directory for your new model and enter it.

cd examples
mkdir Thermostats
cd Thermostats

Step 2: Inside your model folder, create a python script for your model.

touch Thermostats_ODE.py

Step 3: Write the TC_Simulate function in the python file Thermostats_ODE.py.

For the thermostat system, one simulator function could be:

def thermo_dynamic(y,t,rate):
dydt = rate*y
return dydt

def TC_Simulate(Mode,initialCondition,time_bound):
time_step = 0.05;
time_bound = float(time_bound)
initial = [float(tmp) for tmp in initialCondition]
number_points = int(np.ceil(time_bound/time_step))
t = [i*time_step for i in range(0,number_points)]
if t[-1] != time_step:

t.append(time_bound)

y_initial = initial[0]

if Mode == 'On':
rate = 0.1

elif Mode == 'Off':
rate = -0.1

(continues on next page)

12 Chapter 4. DryVR’s Verification Language

DryVR Documentation, Release 2.0

(continued from previous page)

else:
print('Wrong Mode name!')

sol = odeint(thermo_dynamic,y_initial,t,args=(rate,),hmax = time_step)

Construct the final output
trace = []
for j in range(len(t)):

tmp = []
tmp.append(t[j])
tmp.append(sol[j,0])
trace.append(tmp)

return trace

In this example, we use odeint simulator from Scipy, but you use any programming language as long as the
TC_Simulate function follows the input-output requirement:

TC_Simulate(Mode,initialCondition,time_bound)
Input:

Mode (string) -- a string indicates the model you want to simulate. Ex. "On"
initialCondition (list of float) -- a list contains the initial condition. Ex.

→˓"[32.0]"
time_bound (float) -- a float indicates the time horizon for simulation. EX. '10.0

→˓'
Output:

Trace (list of list of float) -- a list of lists contain the trace from a
→˓simulation.

Each index represents the simulation for certain time step.Represents as [time,
→˓v1, v2,].

Ex. "[[0.0,32.0],[0.1,32.1],[0.2,32.2]........[10.0,34.3]]"

Step 4: Inside your model folder, create a Python initiate script.

touch __init__.py

Inside your initiate script, import file with function TC_Simulate.

from Thermostats_ODE import *

Step 5: Go to inputFile folder and create an input file for your new model using the format discussed in Input Format.

Create a transition graph specifying the mode transitions. For example, we want the temperature to start within the
range [75, 76] in the “On” mode. After [1, 1.1] second, it transits to the “Off” mode, and transits back to the “On”
mode after another [1, 1.1] seconds. For bounded time 3.5𝑠, we want to check whether the temperature is above 90.

The input file can be written as:

{
"vertex":["On","Off","On"],
"edge":[[0,1],[1,2]],
"variables":["temp"],
"guards":["And(t>1.0,t<=1.1)","And(t>1.0,t<=1.1)"],
"initialSet":[[75.0],[76.0]],
"unsafeSet":"@Allmode:temp>91",
"timeHorizon":3.5,
"directory":"examples/Thermostats"

}

Save the input file in the folder input/daginput and name it as input_thermo.json.

4.5. Advanced Tricks: Verify your own black-box system 13

DryVR Documentation, Release 2.0

Step6: Run the verification algorithm using the command:

python main.py input/daginput/input_thermo.json

The system has been checked to be safe with the output:

System is Safe!

We can plot the reachtube using the command:

python plotter.py

And the reachtube for the temperature is shown as

14 Chapter 4. DryVR’s Verification Language

DryVR Documentation, Release 2.0

Fig. 2: The reachtube for the temperature of the thermostat system example

4.5. Advanced Tricks: Verify your own black-box system 15

DryVR Documentation, Release 2.0

16 Chapter 4. DryVR’s Verification Language

CHAPTER 5

DryVR’s Synthesis Language

In DryVR, a hybrid system is modeled as a combination of a white-box that specifies the mode switches (Transition
Graph) and a black-box that can simulate the continuous evolution in each mode (Black-box Simulator).

The control synthesis problem for DryVR is to find a white-box transition graph given the black-box simulator with
addition inputs listed in (Input Format).

5.1 Input Format

The input for DryVR control synthesis is of the form

{
"modes":[modes that black simulator takes]
"variables":[the name of variables in the system]
"initialSet":[two arrays defining the lower and upper bound of each variable]
"unsafeSet":@[mode name]:[unsafe region]
"goalSet":[A z3 expression for target set]
"timeHorizon":[time bound for control synthesis, the graph should be bounded in

→˓time horizon]
"directory": directory of the folder which contains the simulator for black-box

→˓system
"minTimeThres": minimal staying time for each mode to limit number of trainsition.
"goal":[[goal variables],[lower bound][upper bound]] # This is a rewrite for goal

→˓set for dryvr to calculate distance.
}

Example input for the robot in maze example

{
"modes":["0", "1", "2", "3", "4", "5", "6", "7"],
"variables":["x","y","vx","vy"],
"initialSet":[[1.0,1.0,1.0,1.0],[1.1,1.0,1.0,1.0]],
"unsafeSet":"@Allmode:Or(And(x>=2.0, x<3.0, y>=3.0, y<=4.0), And(x>=3.0, x<=4.0, y>

→˓=2.0, y<3.0), x<0, x>5, y<0, y>5)",
(continues on next page)

17

DryVR Documentation, Release 2.0

(continued from previous page)

"goalSet":"And(x>=3.0, x<=4.0, y>=3.0, y<=4.0)",
"timeHorizon":10.0,
"minTimeThres":1.0,
"directory":"examples/carinmaze",
"goal":[["x","y"],[3.0,3.0],[4.0,4.0]]

}

5.2 Output Interpretation

The tool will print background information like the current mode, transition time, initial set on the run. The final result
about goal reached or not reached will be printed at the bottom.

When the system find the transition graph that statisfy the requirement, the final result will look like

goal reached

When the system cannot find graph, the final result will look like

could not find graph

Note that DryVR’s algorithm is searching the graph randomly, if the system cannot find the graph, it does not mean
the graph is not exist with current input. You can try run the algorithm multiple times to get more accurate result.
Increase RANDSECTIONNUM in DryVR’s configuration will increase the chance of finding hte transition graph.
(See {Parameters configuration}) If the the system find the transition graph, the system will plot the transition graph
and will be stored in “output/rrtGraph.png”

5.3 Advanced Tricks: Making control synthesis work on your own
black-box system

Creating black box simulator is exactly same as we introduced in DryVR’s language page (Advanced Tricks: Verify
your own black-box system) up to Step 4.

For the Step 5, instead of creating a verification input file, you need to create control synthesis input file we have
discussed in Input Format.

For example, Let’s set the intial temperature within the range [75, 76], and we want to reach the target temperature
within the range [68, 72], while avoiding temperature that is larger than 90. We want to start our search from “On”
mode and reach our goal in bounded time 4𝑠, and set the minimal staying time to 1𝑠.

the input file can be written as:

{
"modes":["On", "Off"],
"initialMode":"On",
"variables":["temp"],
"initialSet":[[75.0],[76.0]],
"unsafeSet":"@Allmode:temp>90",
"goalSet":"And(temp>=68.0, temp<=72.0)",
"timeHorizon":4.0,
"minTimeThres":1.0,
"directory":"examples/Thermostats",

(continues on next page)

18 Chapter 5. DryVR’s Synthesis Language

DryVR Documentation, Release 2.0

(continued from previous page)

"goal":[["temp"],[68.0],[72.0]]
}

Save the input file in the folder input/rrtinput and name it as temp.json.

Run the graph search algorithm using the command:

python rrt.py input/rrtinput/temp.json

The graph has been found with the output:

goal reached!

If you check the the output/rrtGraph.png, you would get a transition graph for this problem. As you can see the system
turn from On state to Off state to reach the goal.

rrtGraph.png

Fig. 1: The white box transition graph of the thermostat system

5.3. Advanced Tricks: Making control synthesis work on your own black-box system 19

DryVR Documentation, Release 2.0

20 Chapter 5. DryVR’s Synthesis Language

CHAPTER 6

Examples and Performance Evaluation

6.1 Getting started: Simple Automatic Emergency Braking

Fig. 1: An illustration of Automatic Emergency Braking System

Consider the example an AEB as shown above: Cars 1 and 2 are cruising down the highway with zero relative velocity
and certain initial relative separation; Car 1 suddenly switches to a braking mode and starts slowing down according,
certain amount of time elapses, before Car 2 switches to a braking mode. We are interested to analyze the severity
(relative velocity) of any possible collisions.

6.1.1 Safety Verification of the AEB System

The black-box of the vehicle dynamics is described in The Autonomous Vehicle Benchmark, and the transition graph
of the above AEB is shown in Transition Graph. The unsafe region is that the relative distance between the two cars
are too close (|𝑠𝑦1 − 𝑠𝑦2| < 3). The input files describing the hybrid system is shown in Input Format.

6.1.2 Verification Result of the AEB System

Run DryVR’s verification algorithm for the AEB system:

21

DryVR Documentation, Release 2.0

python main.py input/daginput/input_brake.json

The system is checked to be safe. We can also plot the reachtubes for different variables. For example, the reachtubes
for the position of Car1 and Car2 along the road the direction are shown below. From the reachtube we can also clearly
see that the relative distance between the two cars are never too small.

6.2 The Autonomous Vehicle Benchmark

The hybrid system for a scenario is constructed by putting together several individual vehicles. The higher-level
decisions (paths) followed by the vehicles are captured by the transition graphs discussed in Transition Graph.

Each vehicle has the following modes

• Const: move forward at constant speed,

• Acc1: constant acceleration,

• Brk or Dec: constant (slow) deceleration,

• TurnLeft and TurnRight: the acceleration and steering are controlled in such a manner that the vehicle switches
to its left (resp. right) lane in a certain amount of time.

The mode for the entire system consists of n vehicles are the mode of each vehicle separated by semicolon. For
example, Const;Brk means the first car is in the const speed mode, while the second car is in the brake mode. For each
vehicle, we mainly analyze four variables: absolute position (𝑠𝑥) and velocity (𝑣𝑥) orthogonal to the road direction
(𝑥-axis), and absolute position (𝑠𝑦) and velocity (𝑣𝑦) along the road direction (𝑦-axis). The throttle and steering is
captured using the four variables.

6.3 Verification Examples

DryVR now comes with more than two dozen interesting examples, including

• 6 mixed-signal circuit models with hundreds of nonlinear terms in the dynamics and both time and state depen-
dent transitions

• 6 high dimensional linear system models (up to 384 dimensions)derived from fields such as civil engineering
and robotics

• an 8-dimensional hybrid vehicle lane switch model modeling a vehicle switches its lane on highway if it get too
close to another vehicle in front of it

• a set of standard 2-7 dimensional benchmarks

The simulators for these models are also available in the folder “examples” under the root directory, and the input files
are in the folder “input/daginput” and “input/nondaginput”.

6.4 Verification Peformance Evaluation

We have measured performance for examples come with DryVR 2.0. Peformance is measured using computer with i7
6600u, 16gb ram, Ubuntu 16.04 OS.

22 Chapter 6. Examples and Performance Evaluation

DryVR Documentation, Release 2.0

Fig. 2: Reachtube of the position sy of Car1 and Car2

6.4. Verification Peformance Evaluation 23

DryVR Documentation, Release 2.0

Model Dimension Time for 1 simulation Total Time Flow* time
Biological model I 7 0.01s 0.04s 66.4s
Biological model II 7 0.01s 0.04s 223.4s
Coupled Vanderpol 4 0.03s 0.14s 1038.3s
Spring pendulum 4 0.05s 0.16s 1377.5s
Roessler 3 0.02s 0.36s 17.1s
Lorentz system 3 0.34s 1.07s 316.7s
Lac operon 2 0.47s 171.35s 44.2s
Lotka-Volterra 2 0.02s 0.10s 3.9s
Buckling column 2 0.04s 0.43s 26.4s
Jet engine 2 0.07s 12.1s 6.8s
Brusselator 2 0.10s 3.02s 5.2s
Vanderpol 2 0.05s 2.92s 6.4s
Vehicle platoon 3 9 0.32s 4.28s 21.08s
Uniform nor sigmoid 3 120.91s 1314.22s Exception
Uniform inverter loop 2 10.94s 278.56s Exception
Uniform inverter sigmoid 2 24.87s 246.76s Exception
Uniform nor ramp 3 173.77s 1765.55s Exception
Uniform or ramp 4 176.70s 1778.87s Exception
Uniform or sigmoid 4 168.75s 2186.00s Exception
Clamped beam 348 540.80s 5717.63s Time out
Building model 48 3.28s 20.24s Time out
Partial differential equation 20 12.05s 41.21s Time out
FOM 20 12.18s 40.9s Time out
Motor control system 8 5.22s 17.89s Time out
International space station 25 79.99s 243.60s Time out
Lane switch 8 0.29s 563.52s N/A

6.5 Synthesis Examples

We provide 6 controller synthesis benchmarks examples, including:

• A vehicle collision avoidance model where a car driving on the highway is asked to avoid an obstacle in front
of it.

• Robot find a path in a maze.

• Motion planning from synthesis tool Pessoa with specification similar to Example 2.

• DC motor where the velocity of a DC motor needs to be regulated.

• Room heating where the task is to control the temperature of 3 rooms and keep them around 21.

• Inverted pendulum as a classical reach-avoid problem.

6.6 Synthesis Performance Evaluation

Peformance is measured using computer with i7 6600u, 16gb ram, Ubuntu 16.04 OS. Note the running time for graph
search can be very different since the alogirthm is randomly search for the graph. It may also return nothing as well.
Try to run algorithm multiple times if it does not return the graph.

24 Chapter 6. Examples and Performance Evaluation

DryVR Documentation, Release 2.0

Example Dimension Time horizon Min staying time Running Time
vehicle collision avoidance 4 50.0s 2.0s 1896.26s
robot in maze 4 10.0s 1.0s 98.93s
motion plan 3 6.0s 1.0s 4.55s
DC motor 2 1.0s 0.1s 0.35s
room heating 3 25.0s 2.0s 2.66s
inverted pendulum 2 2.0s 0.2s 6.06s

6.6. Synthesis Performance Evaluation 25

DryVR Documentation, Release 2.0

26 Chapter 6. Examples and Performance Evaluation

CHAPTER 7

Parameters configuration

Parameters in DryVR can be changed by users to get desire result for verification and synthesis. The configuration file
is stored in

src/common/constant.py

The following parameters can be changed by users

Verification constant
SIMUTESTNUM = 1
SIMTRACENUM = 10
REFINETHRES = 10
CHILDREFINETHRES = 2

Synthesis Constant
RANDMODENUM = 3
RANDSECTIONNUM = 3

Verification constant:

• SIMUTESTNUM is the number of hybrid simulation runs at beginning of the verification algorithm to find
counter examples.

• SIMTRACENUM is the number of sumulation traces generated to learn the sensitity (discrepancy function).

• REFINETHRES is the refine threshold for initial set given by user.

• CHILDREFINETHRES is threshold of the refinement times for non-initial vertices of the transition graph

Synthesis Constant:

• RANDMODENUM is the number of random modes picked at each time for each candidate guard

• RANDSECTIONNUM is number of time intervals picked as the next set of candidate guards

27

DryVR Documentation, Release 2.0

28 Chapter 7. Parameters configuration

CHAPTER 8

Publications

• Chuchu Fan, Bolun Qi, Sayan Mitra and Mahesh Viswanathan, DRYVR:Data-driven verification and composi-
tional reasoning for automotive systems, CAV 2017. [Video]

• Chuchu Fan, Bolun Qi and Sayan Mitra, Road to safe autonomy with data and formal reasoning, (To appear in
IEEE Design & Test).

29

https://link.springer.com/chapter/10.1007%2F978-3-319-63387-9_22
https://link.springer.com/chapter/10.1007%2F978-3-319-63387-9_22
https://www.youtube.com/watch?v=9j7KcbZx6m0
https://arxiv.org/abs/1704.06406

DryVR Documentation, Release 2.0

30 Chapter 8. Publications

CHAPTER 9

People Involved

If you have any problem using the DryVR, contact the authors of the accompanying paper(s)

Chuchu Fan PhD candidate, ECE, Email

Bolun Qi Graduate student, CS, Email

Sayan Mitra Associate Professor, ECE, Email

Mahesh Viswanathan Professor, CS, Email

31

http://cfan10.web.engr.illinois.edu/
mailto:cfan10@illinois.edu
https://www.linkedin.com/in/bolun-qi-28483bb9/
mailto:bolunqi2@illinois.edu
http://mitras.ece.illinois.edu/
mailto:mitras@illinois.edu
http://vmahesh.cs.illinois.edu/
mailto:vmahesh@illinois.edu

	Status
	Installation
	Usage
	Run DryVR Verfication
	Run DryVR Control Synthesis
	Plotter

	DryVR’s Verification Language
	Black-box Simulator
	Transition Graph
	Input Format
	Output Interpretation
	Advanced Tricks: Verify your own black-box system

	DryVR’s Synthesis Language
	Input Format
	Output Interpretation
	Advanced Tricks: Making control synthesis work on your own black-box system

	Examples and Performance Evaluation
	Getting started: Simple Automatic Emergency Braking
	The Autonomous Vehicle Benchmark
	Verification Examples
	Verification Peformance Evaluation
	Synthesis Examples
	Synthesis Performance Evaluation

	Parameters configuration
	Publications
	People Involved

